Demographic population structure and fungal associations of plants colonizing High Arctic glacier forelands, Petuniabukta, Svalbard

The development of vegetation in Arctic glacier forelands has been described as unidirectional, non-replacement succession characterized by the gradual establishment of species typical for mature tundra with no species turnover. Our study focused on two early colonizers of High Arctic glacier forelands: Saxifraga oppositifolia (Saxifragaceae) and Braya purpurascens (Brassicaceae). While the first species is a common generalist also found in mature old growth tundra communities, the second specializes on disturbed substrate. The demographic population structures of the two study species were investigated along four glacier forelands in Petuniabukta, north Billefjorden, in central Spitsbergen, Svalbard. Young plants of both species occurred exclusively on young substrate, implying that soil conditions are favourable for establishment only before soil crusts develop. We show that while S. oppositifolia persists from pioneer successional stages and is characterized by increased size and flowering, B. purpurascens specializes on disturbed young substrate and does not follow the typical unidirectional, non-replacement succession pattern. Plants at two of the forelands were examined for the presence of root-associated fungi. Fungal genus Olpidium (Fungus incertae sedis) was found along a whole successional gradient in one of the forelands.

Keywords: Colonizer; deglaciation; endophyte; High Arctic; Olpidium; succession.

(Published: 30 April 2014)

Citation: Polar Research 2014, 33, 20797, http://dx.doi.org/10.3402/polar.v33.20797

Continue ReadingDemographic population structure and fungal associations of plants colonizing High Arctic glacier forelands, Petuniabukta, Svalbard

Deterrent activities in the crude lipophilic fractions of Antarctic benthic organisms: chemical defences against keystone predators

Generalist predation constitutes a driving force for the evolution of chemical defences. In the Antarctic benthos, asteroids and omnivore amphipods are keystone opportunistic predators. Sessile organisms are therefore expected to develop defensive mechanisms mainly against such consumers. However, the different habits characterizing each predator may promote variable responses in prey. Feeding-deterrence experiments were performed with the circumpolar asteroid macropredator Odontaster validus to evaluate the presence of defences within the apolar lipophilic fraction of Antarctic invertebrates and macroalgae. A total of 51% of the extracts were repellent, yielding a proportion of 17 defended species out of the 31 assessed. These results are compared with a previous study in which the same fractions were offered to the abundant circum-Antarctic amphipod Cheirimedon femoratus. Overall, less deterrence was reported towards asteroids (51%) than against amphipods (80.8%), principally in sponge and algal extracts. Generalist amphipods, which establish casual host–prey sedentary associations with biosubstrata (preferentially sponges and macroalgae), may exert more localized predation pressure than sea stars on certain sessile prey, which would partly explain these results. The nutritional quality of prey may interact with feeding deterrents, whose production is presumed to be metabolically expensive. Although optimal defence theory posits that chemical defences are managed and distributed as to guarantee protection at the lowest cost, we found that only a few organisms localized feeding deterrents towards most exposed and/or valuable body regions. Lipophilic defensive metabolites are broadly produced in Antarctic communities to deter opportunistic predators, although several species combine different defensive traits.

Keywords: Antarctic invertebrates; Antarctic algae; chemical ecology; sea star Odontaster validus; amphipod Cheirimedon femoratus; chemical defence.

(Published: 7 April 2014)

Citation: Polar Research 2014, 33, 21624, http://dx.doi.org/10.3402/polar.v33.21624

Continue ReadingDeterrent activities in the crude lipophilic fractions of Antarctic benthic organisms: chemical defences against keystone predators

Species distribution and depth habitat of recent planktic foraminifera in Fram Strait, Arctic Ocean

To describe the horizontal and vertical distribution of recent planktic foraminifera in Fram Strait (Arctic), plankton samples were collected in the early summer of 2011 using a MultiNet sampler (>63 µm) at 10 stations along a west–east transect at 78°50′N. Five depth intervals were sampled from the sea surface down to 500 m. Additionally, sediment surface samples from the same locations were analysed. The ratio between absolute abundances of planktic foraminifera in the open ocean, at the ice margin and in the ice-covered ocean was found to be approximately 2:4:1. The assemblage was dominated by the polar Neogloboquadrina pachyderma (sin.) and the subpolar Turborotalita quinqueloba, which accounted for 76 and 15% of all tests in the warm, saline Atlantic waters and 90 and 5% in the cold and fresh Polar waters, respectively. Both species had maximum absolute abundances between 0 and 100 m water depth, however, they apparently lived shallower under the ice cover than under ice-free conditions. This indicates that the depth habitat of planktic foraminifera in the study area is predominantly controlled by food availability and not by temperature. The distribution pattern obtained by plankton tows was clearly reflected on the sediment surface and we conclude that the assemblage on the sediment surface can be used as an indicator for modern planktic foraminiferal fauna.

Keywords: Planktic foraminifera; Fram Strait; Arctic Ocean; depth habitat; N. pachyderma (sin.); T. quinqueloba.

(Published: 27 May 2014)

To access the supplementary material for this article, please see Supplementary files in the column to the right (under Article Tools).

Citation: Polar Research 2014, 33, 22483, http://dx.doi.org/10.3402/polar.v33.22483

Continue ReadingSpecies distribution and depth habitat of recent planktic foraminifera in Fram Strait, Arctic Ocean

Contrasting strategies of resistance vs. tolerance to desiccation in two polar dipterans

Low water availability is one of the principal stressors for terrestrial invertebrates in the polar regions, determining the survival of individuals, the success of species and the composition of communities. The Arctic and Antarctic dipterans Heleomyza borealis and Eretmoptera murphyi spend the majority of their biennial life cycles as larvae, and so are exposed to the full range of environmental conditions, including low water availability, over the annual cycle. In the current study, the desiccation resistance and desiccation tolerance of larvae were investigated, as well as their capacity for cross-tolerance to temperature stress. Larvae of H. borealis showed high levels of desiccation resistance, only losing 6.9% of their body water after 12 days at 98.2% relative humidity (RH). In contrast, larvae of E. murphyi lost 46.7% of their body water after 12 days at the same RH. Survival of E. murphyi larvae remained high in spite of this loss (>80% survival). Following exposure to 98.2% RH, larvae of E. murphyi showed enhanced survival at −18°C for 2 h. The supercooling point of larvae of both species was also lowered following prior treatment at 98.2% RH. Cross-tolerance to high temperatures (37 or 38.5°C) was not noted following desiccation in E. murphyi, and survival even fell at 37°C following a 12-day pre-treatment. The current study demonstrates two different strategies of responding to low water availability in the polar regions and indicates the potential for cross-tolerance, a capacity which is likely to be beneficial in the ever-changing polar climate.

Keywords: Acclimation; dipteran; supercooling point; temperature; cross-tolerance.

(Published: 22 May 2014)

Citation: Polar Research 2014, 33, 22963, http://dx.doi.org/10.3402/polar.v33.22963

Continue ReadingContrasting strategies of resistance vs. tolerance to desiccation in two polar dipterans

Alien invasions in Antarctica – is anyone liable?

The introduction of non-native species to Antarctica in association with human activities is a major threat to indigenous biodiversity and the region's unique ecosystems, as has been well-demonstrated in other ecosystems globally. Existing legislation contained in the Protocol on Environmental Protection to the Antarctic Treaty does not specifically make the eradication of non-native species mandatory, although it is implicit that human-assisted introductions should not take place. Furthermore, to date, eradications of non-native species in the Treaty area have been infrequent and slow to progress. In 2005 an additional Annex (VI) to the Protocol was agreed concerning “Liability arising from environmental emergencies.” This annex focusses on prevention of environmental emergencies, contingency planning and reclaiming costs incurred when responding to an environmental emergency caused by another operator within the Antarctic Treaty area. However, the types of environmental emergencies covered by the annex are not defined. In this paper we highlight potential difficulties with the application of Annex VI in the context of non-native species control and eradication, including, for example, whether a non-native species introduction would be classified as an “environmental emergency” and therefore be considered under the terms of the annex. Even if this were the case, we conclude that the slow pace of approval of the annex by Antarctic Treaty Parties may prevent it coming into force for many years and, once in force, in its current form it is unlikely to be useful for reclaiming costs associated with the eradication or management of a non-native species.

Keywords: Liability Annex; non-native species; Environmental Protocol; Antarctic Treaty area; eradication; environmental emergency

(Published: 12 May 2014)

To access the supplementary material for this article, please see Supplementary files in the column to the right (under Article Tools).

Citation: Polar Research 2014, 33, 22103, http://dx.doi.org/10.3402/polar.v33.22103

Continue ReadingAlien invasions in Antarctica – is anyone liable?

Spring unloaded

Since reaching its annual maximum extent on March 21, Arctic sea ice extent has declined somewhat unevenly, but has consistently been well below its average 1981 to 2010 extent. While the rate of Arctic-wide retreat was rapid through the first half … Continue reading

Continue ReadingSpring unloaded

Late Holocene climate change recorded in proxy records from a Bransfield Basin sediment core, Antarctic Peninsula

The glacimarine environment of the Antarctic Peninsula region is one of the fastest warming places on Earth today, but details of changes in the recent past remain unknown. Large distances and widespread variability separate late Holocene palaeoclimate reconstructions in this region. This study focuses on a marine sediment core collected from ca. 2000 m below sea level in the Central Bransfield Strait that serves as a key for understanding changes in this region. The core yielded a high sedimentation rate and therefore provides an exceptional high-resolution sedimentary record composed of hemipelagic sediment, with some turbidites. An age model has been created using radiocarbon dates that span the Late Holocene: 3560 cal yr BP to present. This chronostratigraphic framework was used to establish five units, which are grouped into two super-units: a lower super-unit (3560–1600 cal yr BP) and an upper super-unit (1600 cal yr BP–present), based on facies descriptions, laser particle size analysis, x-ray analysis, multi-sensor core logger data, weight percentages and isotopic values of total organic carbon and nitrogen. We interpret the signal contained within the upper super-unit as an increase in surface water irradiance and/or shortening of the sea-ice season and the five units are broadly synchronous with climatic intervals across the Antarctic Peninsula region. While the general trends of regional climatic periods are represented in the Bransfield Basin core we have examined, each additional record that is obtained adds variability to the known history of the Antarctic Peninsula, rather than clarifying specific trends.

Keywords: Antarctic Peninsula; palaeoclimate; Holocene; marine; isotopes.

(Published: 11 June 2014)

Citation: Polar Research 2014, 33, 17236, http://dx.doi.org/10.3402/polar.v33.17236

Continue ReadingLate Holocene climate change recorded in proxy records from a Bransfield Basin sediment core, Antarctic Peninsula

Trochammina as opportunist foraminifera in the Lower Jurassic from north Siberia

The ecostratigraphic analysis of foraminiferal assemblages from Upper Pliensbachian to Lower Toarcian (Lower Jurassic) mudstones, siltstones and black shales from northern Siberia allows for a better understanding of the response to the benthic biotic crisis related to the Toarcian Oceanic Anoxic Event in a high latitude context. The assemblages were dominated by agglutinated taxa with extremely low diversity values and dominance of Trochammina. These features suggest that the foraminiferal assemblages were adapted to restricted conditions, where the main limiting factors were salinity and oxygen degree. The opportunist behaviour of Trochammina enabled this genus to survive and adapt to unfavourable conditions. Trochammina proliferated in relation to the sea-level fall and probable changes in salinity in the Arctic palaeobasin during the Margaritatus Chron and at the beginning of the Viligaensis Chron (Late Pliensbachian). Another Trochammina proliferation is associated with the initial development of the restricted oxygen conditions related to the Toarcian Oceanic Anoxic Event.

Keywords: r-strategists; colonization; anoxic event; ecostratigraphy; black shale.

(Published: 2 July 2014)

Citation: Polar Research 2014, 33, 21653, http://dx.doi.org/10.3402/polar.v33.21653

Continue ReadingTrochammina as opportunist foraminifera in the Lower Jurassic from north Siberia