Peer-reviewed SIMIP related papers. Please email Alexandra Jahn with the citation for any additional papers that should be listed here.

2023

Rieke, O., Årthun, M., and Dörr, J. S.: Rapid sea ice changes in the future Barents Sea, The Cryosphere, 17, 1445–1456, https://doi.org/10.5194/tc-17-1445-2023, 2023.

2022

  • Ayres, H. C., Screen, J. A., Blockley, E. W., & Bracegirdle, T. J. (2022). The Coupled Atmosphere–Ocean Response to Antarctic Sea Ice Loss, Journal of Climate, 35(14), 4665-4685. https://doi.org/10.1175/JCLI-D-21-0918.1
  • DeRepentigny, P., Jahn, A., Holland, M. M., Kay, J. E., Fasullo, J., Lamarque, J. F., … & Barrett, A. P. (2022). Enhanced simulated early 21st century Arctic sea ice loss due to CMIP6 biomass burning emissions. Science Advances, 8(30), eabo2405.
  • Holmes, C. R., Bracegirdle, T. J., & Holland, P. R. (2022). Antarctic sea ice projections constrained by historical ice cover and future global temperature change. Geophysical Research Letters, 49, e2021GL097413. https://doi.org/10.1029/2021GL097413
  • Ridley, J. K., Blockley, E. W., & Jones, G. S. (2022). A change in climate state during a pre-industrial simulation of the CMIP6 model HadGEM3 driven by deep ocean drift. Geophysical Research Letters, 49, e2021GL097171. https://doi.org/10.1029/2021GL097171

2021

  • Årthun, M., Onarheim, I. H., Dörr, J., & Eldevik, T. (2021). The seasonal and regional transition to an ice-free Arctic. Geophysical Research Letters, 48, e2020GL090825. https://doi.org/10.1029/2020GL090825
  • Bonan, D. B., Schneider, T., Eisenman, I., & Wills, R. C. J. (2021). Constraining the date of a seasonally ice-free Arctic using a simple model. Geophysical Research Letters, 48, e2021GL094309. https://doi.org/10.1029/2021GL094309
  • Chen, S., Liu, J., Ding, Y., Zhang, Y., Cheng, X., Hu, Y. (2021), Assessment of Snow Depth over Arctic Sea Ice in CMIP6 Models Using Satellite Data. Adv. Atmos. Sci.. https://doi.org/10.1007/s00376-020-0213-5
  • Crawford, A., Stroeve, J., Smith, A., Jahn. A, Arctic open-water periods are projected to lengthen dramatically by 2100. Commun Earth Environ 2, 109 (2021). https://doi.org/10.1038/s43247-021-00183-x
  • Keen, A., Blockley, E., Bailey, D. A., Boldingh Debernard, J., Bushuk, M., Delhaye, S., Docquier, D., Feltham, D., Massonnet, F., O'Farrell, S., Ponsoni, L., Rodriguez, J. M., Schroeder, D., Swart, N., Toyoda, T., Tsujino, H., Vancoppenolle, M., and Wyser, K (2021), An inter-comparison of the mass budget of the Arctic sea ice in CMIP6 models, The Cryosphere, 15, 951–982, https://doi.org/10.5194/tc-15-951-2021
  • Pauling, A. G., Bushuk, M., & Bitz, C. M. (2021). Robust inter-hemispheric asymmetry in the response to symmetric volcanic forcing in model large ensembles. Geophysical Research Letters, 48, e2021GL092558. https://doi.org/10.1029/2021GL092558

2020

  • Andrews, M. B., Ridley, J. K., Wood, R. A., Andrews, T., Blockley, E. W., Booth, B., Burke, E., Dittus, A. J., Florek, P., Gray, L. J., Haddad, S., Hardiman, S. C., Hermanson, L., Hodson, D., Hogan, E., Jones, G. S., Knight, J. R., Kuhlbrodt, T., Misios, S., Mizielinski, M. S., Ringer, M. A., Robson, J., Sutton, R. T., Historical simulations with HadGEM3‐GC3.1 for CMIP6. Journal of Advances in Modeling Earth Systems, 12, e2019MS001995, https://doi.org/10.1029/2019MS001995, 2020.
  • DeRepentigny, P.,A. Jahn, M. Holland,A. Smith (2020), Arctic Sea Ice in Two Configurations of the Community Earth System Model Version 2 (CESM2) During the 20thand 21stCenturies, J Geophys Res-Oceans, 125, https://doi.org/10.1029/2020JC016133
  • Holland, M.M., M. Bushuk,A. Jahn, A. Roberts (2020), Integrating Models and Observations to Better Predict a Changing Arctic Sea Ice Cover, Arctic Report Card 2020, R. L. Thoman, J. Richter- Menge, and M. L. Druckenmiller, Eds., https://doi.org/10.25923/bx13-ja71
  • Mackie, S., Langhorne, P. J., Heorton, H. D. B. S., Smith, I. J., Feltham, D. L., & Schroeder, D. (2020). Sea ice formation in a coupled climate model including grease ice. Journal of Advances in Modeling Earth Systems, 12, e2020MS002103. https://doi.org/10.1029/2020MS002103
  • Mackie, S., Smith, I. J., Ridley, J. K., Stevens, D. P., & Langhorne, P. J. (2020). Climate Response to Increasing Antarctic Iceberg and Ice Shelf Melt, Journal of Climate, 33(20), 8917-8938. https://doi.org/10.1175/JCLI-D-19-0881.1
  • Mackie, S., Smith, I. J., Stevens, D. P., Ridley, J. K., & Langhorne, P. J. (2020). Interactions between Increasing CO2 and Antarctic Melt Rates, Journal of Climate, 33(20), 8939-8956. https://doi.org/10.1175/JCLI-D-19-0882.1
  • Massonnet, F., Barthélemy, A., Worou, K., Fichefet, T., Vancoppenolle, M., Rousset, C., & Moreno-Chamarro, E. (2019). On the discretization of the ice thickness distribution in the NEMO3.6-LIM3 global ocean–sea ice model. Geoscientific Model Development, 12(8), 3745–3758. https://doi.org/10.5194/gmd-12-3745-2019
  • Meehl, G. A., Arblaster, J. M., Bates, S., Richter, J. H., Tebaldi, C., Gettelman, A., … & Strand, G. (2020). Characteristics of future warmer base states in CESM2. Earth and Space Science, 7(9), e2020EA001296.
  • Moreno-Chamarro, E., Ortega, P., & Massonnet, F. (2020). Impact of the ice thickness distribution discretization on the sea ice concentration variability in the NEMO3.6–LIM3 global ocean–sea ice model. Geoscientific Model Development, 13(10), 4773–4787. https://doi.org/10.5194/gmd-13-4773-2020
  • Roach, L. A., Dörr, J., Holmes, C. R., Massonnet, F., Blockley, E. W., Notz, D., & Bitz, C. M. (2020), Antarctic sea ice in CMIP6. Geophysical Research Letters, 47, e2019GL086729. https://doi.org/10.1029/2019GL086729
  • SIMIP Community (2020), Arctic sea ice in CMIP6. Geophysical Research Letters, 47, e2019GL086749. https://doi.org/10.1029/2019GL086749
  • Smith, A., Jahn, A., and Wang, M. (2020), Seasonal transition dates can reveal biases in Arctic sea ice simulations, The Cryosphere, 14, 2977–2997, https://doi.org/10.5194/tc-14-2977-2020 .

2016

SIMIP overview paper

Notz, D., Jahn, A., Holland, M., Hunke, E., Massonnet, F., Stroeve, J., Tremblay, B., and Vancoppenolle, M. (2016), The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): understanding sea ice through climate-model simulations, Geosci. Model Dev., 9, 3427–3446, https://doi.org/10.5194/gmd-9-3427-2016